Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Synth Biol ; 13(2): 466-473, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38266181

RESUMO

We engineered HEK293T cells with a transgene encoding tetracycline-inducible expression of a Staphylococcus aureus nuclease incorporating a translocation signal. We adapted the unmodified and nuclease-engineered cell lines to grow in suspension in serum-free media, generating the HEK293TS and NuPro-2S cell lines, respectively. Transient transfection yielded 1.19 × 106 lentiviral transducing units per milliliter (TU/mL) from NuPro-2S cells and 1.45 × 106 TU/mL from HEK293TS cells. DNA ladder disappearance revealed medium-resident nuclease activity arising from NuPro-2S cells in a tetracycline-inducible manner. DNA impurity levels in lentiviral material arising from NuPro-2S and HEK293TS cells were undetectable by SYBR Safe agarose gel staining. Direct measurement by PicoGreen reagent revealed DNA to be present at 636 ng/mL in lentiviral material from HEK293TS cells, an impurity level reduced by 89% to 70 ng/mL in lentiviral material from NuPro-2S cells. This reduction was comparable to the 23 ng/mL achieved by treating HEK293TS-derived lentiviral material with 50 units/mL Benzonase.


Assuntos
Fluoreto de Fosfato Acidulado , Vetores Genéticos , Lentivirus , Animais , Humanos , Lentivirus/genética , Vetores Genéticos/genética , Células HEK293 , Transfecção , DNA/genética , Tetraciclina , Mamíferos/genética
3.
Heliyon ; 9(6): e17067, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484388

RESUMO

At present lentiviral vector production for cell and gene therapy commonly involves transient plasmid transfection of mammalian cells cultivated in serum-containing media and addition of exogenous nuclease to reduce host cell and plasmid DNA impurities. Switching from serum-containing media to chemically-defined, serum free media, and minimising the number of process additions, are both increasingly regarded as necessary steps for simplifying and potentially automating lentiviral vector bioprocessing in future. Here we adapted human embryonic kidney 293T (HEK293T) cells to grow in serum-free media and also modified these cells with transgenes designed to encode a secreted nuclease activity. Stable transfection of HEK293T cells with transgenes encoding the Staphylococcus aureus nuclease B (NucB) open reading frame with either its native secretion signal peptide, the murine Igκ chain leader sequence or a novel viral transport fusion protein, all resulted in qualitatively detectable nuclease activity in serum-free media. Serum-free transient transfection of human embryonic kidney HEK293T cells stably harbouring the transgene for NucB with its native secretion signal produced active lentivirus in the presence of medium-resident nuclease activity. This lentivirus material was able to transduce the AGF-T immortal T cell line with a green fluorescent protein reporter payload at a level of 2.05 × 105 TU/mL (±3.34 × 104 TU/mL). Sufficient nuclease activity was present in 10 µL of this unconcentrated lentivirus material to degrade 1.5 µg DNA within 2 h at 37 °C, without agitation - conditions compatible with lentivirus production. These observations demonstrate that lentiviral vector production, by transient transfection, is compatible with host cells harbouring a nuclease transgene and evidencing nuclease activity in their surrounding growth media. This work provides a solid basis for future investigations, beyond the scope of this present study, in which commercial and academic groups can apply this approach to therapeutic payloads and potentially omit exogenous nuclease bioprocess additions.

4.
Biol Open ; 12(7)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37284818

RESUMO

We report data consistent with tetracycline-mediated fluorescence having the potential to be an effective marker of senescence in immortalised cells. HeLa cells that had previously undergone more than 20 passages were transiently transfected with a plasmid encoding a novel tetracycline-inducible transgene featuring an open reading frame for green fluorescent protein. While characterising the performance of this plasmid and transfection procedure, HeLa cell fluorescence was observed to result from incubating cells with media containing 2 µg/ml tetracycline alone, without plasmid or transfection reagent. To investigate this phenomenon further, HeLa and HEK293T cells were purchased from a tissue culture collection and after cultivation over 4-23 passages, incubated with media containing 2 µg/ml tetracycline. For both cell lines, tetracycline-mediated fluorescence increase correlated with passage number increase. This effect in HeLa and HEK293T cells was also borne out by expression of ß-galactosidase activity, an imperfect but widely used marker of cellular senescence. These data suggest tetracycline may have utility as a marker of cellular senescence in immortal cells and can inform future investigation and validation of this previously unreported application for this reagent.


Assuntos
Antibacterianos , Tetraciclina , Humanos , Células HeLa , Células HEK293 , Tetraciclina/farmacologia , Tetraciclina/metabolismo , beta-Galactosidase/metabolismo
5.
ACS Synth Biol ; 12(3): 657-663, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36848292

RESUMO

We constructed a three-input biological logic gate: S OR (G XNOR M), where S is sorbitol, G is glycerol, and M is methanol, to optimize co-expression of two transgenes in Komagataella phaffii using batch-mode carbon source switching (CSS). K. phaffii was engineered to harbor transgenes encoding a Candida rugosa triacylglycerol lipase, which can enhance downstream processing by removing host cell lipids from homogenates, and the hepatitis B virus surface antigen (HBsAg), a protein that self-assembles into a virus-like particle (VLP) vaccine. Using the native alcohol oxidase 1 (PAOX1) and enolase 1 (PENO1) promoters to direct VLP vaccine and lipase expression, respectively, successfully provided an OR(XNOR) gate function with double-repression as the output. This logic gate functionality enabled use of CSS to ensure that approximately 80% of total VLP yield was accumulated before cells were burdened with lipase expression in 250 mL DasGip bioreactor cultivation.


Assuntos
Pichia , Vacinas de Partículas Semelhantes a Vírus , Pichia/metabolismo , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Lipase/genética , Lipase/metabolismo , Carbono/metabolismo , Metanol/metabolismo
6.
Heliyon ; 8(2): e08891, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35198764

RESUMO

Kinetoplastid protozoa possess properties that are highly divergent from the mammalian, yeast and bacterial cells more commonly used in synthetic biology and represent a tantalisingly untapped source of bioengineering potential. Trypanosoma brucei brucei (T. b. brucei), an established model organism for studying the Kinetoplastida, is non-pathogenic to humans and provides an interesting test case for establishing synthetic biology in this phylogenetic class. To demonstrate further the tractability of Kinetoplastida to synthetic biology, we sought to construct and demonstrate a Goodwin oscillator, the simplest oscillatory gene network, in T. b. brucei for the first time. We report one completed iteration of the archetypal synthetic biology Design-Build-Test-Learn (DBTL) cycle; firstly, using Ab initio mathematical modelling of the behaviour a theoretical, oscillatory, trypanosomal synthetic gene network (SGN) to inform the design of a plasmid encoding that network. Once assembled, the plasmid was then used to generate a stable transfectant T. b. brucei cell line. To test the performance of the oscillatory SGN, a novel experimental setup was established to capture images of the fluorescent signal from motion-restricted live cells. Data captured were consistent with oscillatory behaviour of the SGN, with cellular fluorescence observed to oscillate with a period of 50 min, with varying amplitude and linear growth trend. This first DBTL cycle establishes a foundation for future cycles in which the SGN design and experimental monitoring setup can be further refined.

7.
Food Chem ; 373(Pt B): 131474, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34731814

RESUMO

Reported herein is the purification of the pigment of black sturgeon caviar and its unambiguous identification as a typical eumelanin by means of chemical degradation coupled with electron paramagnetic resonance (EPR) evidence. HPLC and LC-MS analysis of oxidative degradation mixtures revealed the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA), a specific marker of eumelanin pigments, in yields compatible with a 6.5% w/w pigment content. EPR spectral features and parameters were in close agreement with those reported for a typical natural eumelanin such as Sepia melanin from squid ink. The identification for the first time of eumelanin in a fish roe is expected to provide a novel molecular basis for the valorization of black caviar and production wastes thereof in food chemistry and diet.


Assuntos
Melaninas , Pigmentação , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
8.
Biotechnol Prog ; 36(1): e2893, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425642

RESUMO

Whole cell biocatalysis is an ideal tool for biotransformations that demand enzyme regeneration or robustness to fluctuating pH, osmolarity and biocontaminant load in feedstocks. The methylotrophic yeast Komagataella phaffii is an attractive alternative to Escherichia coli for whole cell biocatalysis due to its genetic tractability and capacity to grow to up to 60% wet cell weight by volume. We sought to exploit high cell density K. phaffii to intensify whole-cell chiral amino-alcohol (CAA) biosynthesis. We engineered two novel K. phaffii GS115 strains: one by inserting a Chromobacterium violaceum ω-transaminase CV2025 transgene, for strain PpTAmCV708, and a second strain, PpTAm-TK16, by also inserting the same CV2025 transgene plus a second transgene for a native transketolase. At high cell density, both strains tolerated high substrate concentrations. When fed three low cost substrates, 200 mM glycolaldehyde, 200 mM hydroxypyruvate and 150 mM methylbenzylamine, PpTAm-TK16 whole cells achieved 0.29 g L-1 hr-1 space-time yield of the acetophenone by-product, a 49-fold increase of the highest levels reported for E. coli whole cells harboring the equivalent pathway. When fed only the low-cost substrate, 150 mM methylbenzylamine, strain PpTAmCV708 achieved a 105-fold increase of reported E. coli whole cell biocatalysis performance, with a space-time yield of 0.62 g L-1 hr-1 of the CAA, 2-amino-1,3,4-butanetriol (ABT). The rapid growth and high biomass characteristics of K. phaffii were successfully exploited for production of ABT by whole-cell biocatalysis at higher levels than the previously achieved with E. coli in the presence of the same substrates.


Assuntos
Amino Álcoois/metabolismo , Chromobacterium/enzimologia , Escherichia coli/metabolismo , Engenharia de Proteínas , Saccharomycetales/metabolismo , Transcetolase/metabolismo , Amino Álcoois/química , Biotransformação , Escherichia coli/citologia , Transgenes
9.
Heliyon ; 5(8): e02338, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31467995

RESUMO

We have engineered strain BG-10 of the methylotrophic yeast Komagataella phaffii for use as an effective whole cell biocatalyst. We introduced into the yeast a transgene encoding a Chromobacterium violaceum ω-transaminase for transcription in response to methanol induction. The strain was then assessed with respect to its growth performance and biotransformation of a fed ketoalcohol substrate to an amino-alcohol. In the resultant strain, BG-TAM, methanol induction did not compromise cell growth. Successful bioconversion of fed substrates to the by-product, acetophenone, indicated transaminase activity in shake flask-cultivated BG-TAM cells. We then used bioreactor cultivation to exploit the high levels of biomass achievable by Komagataella phaffii. In a 900 µL reaction the BG-TAM strain at OD600 = 1024 achieved up to 0.41 mol mol-1 (molproduct molsubstrate -1) yield on substrate (Yp/s) for production of 1-methyl-3-phenylpropylamine and a space time yield (STY) of 0.29 g L-1 h-1 for production of 2-amino-1,3,4-butanetriol. We have shown that transamination, an important step for bespoke synthesis of small molecule medicines, is biologically realisable using enzymes with a broad substrate range, such as ω-transaminases, within living yeast cells that are fed low-cost substrates for bioconversion.

10.
Processes (Basel) ; 6(9): 167, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30568914

RESUMO

Work on synthetic biology has largely used a component-based metaphor for system construction. While this paradigm has been successful for the construction of numerous systems, the incorporation of contextual design issues-either compositional, host or environmental-will be key to realising more complex applications. Here, we present a design framework that radically steps away from a purely parts-based paradigm by using aspect-oriented software engineering concepts. We believe that the notion of concerns is a powerful and biologically credible way of thinking about system synthesis. By adopting this approach, we can separate core concerns, which represent modular aims of the design, from cross-cutting concerns, which represent system-wide attributes. The explicit handling of cross-cutting concerns allows for contextual information to enter the design process in a modular way. As a proof-of-principle, we implemented the aspect-oriented approach in the Python tool, SynBioWeaver, which enables the combination, or weaving, of core and cross-cutting concerns. The power and flexibility of this framework is demonstrated through a number of examples covering the inclusion of part context, combining circuit designs in a context dependent manner, and the generation of rule, logic and reaction models from synthetic circuit designs.

11.
Biotechnol Lett ; 39(12): 1865-1873, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28875244

RESUMO

OBJECTIVES: To reduce unwanted Fab' leakage from an autonucleolytic Escherichia coli strain, which co-expresses OmpA-signalled Staphylococcal nuclease and Fab' fragment in the periplasm, by substituting in Serratial nuclease and the DsbA periplasm translocation signal as alternatives. RESULTS: We attempted to genetically fuse a nuclease from Serratia marcescens to the OmpA signal peptide but plasmid construction failed, possibly due to toxicity of the resultant nuclease. Combining Serratial nuclease to the DsbA signal peptide was successful. The strain co-expressing this nuclease and periplasmic Fab' grew in complex media and exhibited nuclease activity detectable by DNAse agar plate but its growth in defined medium was retarded. Fab' coexpression with Staphylococcal nuclease fused to the DsbA signal peptide resulted in cells exhibiting nuclease activity and growth in defined medium. In cultivation to high cell density in a 5 l bioreactor, DsbA-fused Staphylococcal nuclease co-expression coincided with reduced Fab' leakage relative to the original autonucleolytic Fab' strain with OmpA-fused staphylococcal nuclease. CONCLUSIONS: We successfully rescued Fab' leakage back to acceptable levels and established a basis for future investigation of the linkage between periplasmic nuclease expression and leakage of co-expressed periplasmic Fab' fragment to the surrounding growth media.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fragmentos Fab das Imunoglobulinas/genética , Isomerases de Dissulfetos de Proteínas/genética , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Reatores Biológicos/microbiologia , Sobrevivência Celular , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fragmentos Fab das Imunoglobulinas/metabolismo , Engenharia Metabólica , Isomerases de Dissulfetos de Proteínas/metabolismo
12.
Biomol Detect Quantif ; 11: 21-30, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28331815

RESUMO

We measured the impact of the presence of total Escherichia coli (E. coli) cellular material on the performance of the Linear Regression of Efficiency (LRE) method of absolute quantitative PCR (LRE qPCR), which features the putatively universal CAL1 calibration reaction, which we propose as a synthetic biology standard. We firstly used a qPCR reaction in which a sequence present in the lone genomic BirA locus is amplified. Amplification efficiency for this reaction, a key metric for many quantitative qPCR methods, was inhibited by cellular material from bioreactor cultivation to a greater extent than material from shake flask cultivation. We then compared LRE qPCR to the Standard Curve method of absolute qPCR (SC qPCR). LRE qPCR method matched the performance of the SC qPCR when used to measure 417-4.17 × 107 copies of the BirA target sequence present in a shake flask-derived cell sonicates sample, and for 97-9.7 × 105 copies in the equivalent bioreactor-derived sample. A plasmid-encoded T7 bacteriophage sequence was next used to compare the methods. In the presence of cell sonicates from samples of up to OD600 = 160, LRE qPCR outperformed SC qPCR in the range of 1.54 × 108-1.54 × 1010 copies of the T7 target sequence and matched SC qPCR over 1.54 × 104-1.54 × 107 copies. These data suggest the CAL1 standard, combined with the LRE qPCR method, represents an attractive choice as a synthetic biology qPCR standard that performs well even when unpurified industrial samples are used as the source of template material.

13.
Heliyon ; 3(2): e00238, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28203643

RESUMO

Vaccinia virus (VACV) is an established vector for vaccination and is beginning to prove effective as an oncolytic agent. Industrial production of VACV stands to benefit in future from advances made by synthetic biology in genome engineering and standardisation. The CV-1 cell line can be used for VACV propagation and has been used extensively with the CRISPR/Cas9 system for making precise edits of the VACV genome. Here we take first steps toward establishing a scalable synthetic biology platform for VACV production with CV-1 cells featuring standardised biological tools and serum free cell cultivation. We propose a new BioBrick™ plasmid backbone format for inserting transgenes into VACV. We then test the performance of CV-1 cells in propagation of a conventional recombinant Lister strain VACV, VACVL-15 RFP, in a serum-free process. CV-1 cells grown in 5% foetal bovine serum (FBS) Dulbecco's Modified Eagle Medium (DMEM) were adapted to growth in OptiPRO and VP-SFM brands of serum-free media. Specific growth rates of 0.047 h-1 and 0.044 h-1 were observed for cells adapted to OptiPRO and VP-SFM respectively, compared to 0.035 h-1 in 5% FBS DMEM. Cells adapted to OptiPRO and to 5% FBS DMEM achieved recovery ratios of over 96%, an indication of their robustness to cryopreservation. Cells adapted to VP-SFM showed a recovery ratio of 82%. Virus productivity in static culture, measured as plaque forming units (PFU) per propagator cell, was 75 PFU/cell for cells in 5% FBS DMEM. VP-SFM and OptiPRO adaptation increased VACV production to 150 PFU/cell and 350 PFU/cell respectively. Boosted PFU/cell from OptiPRO-adapted cells persisted when 5% FBS DMEM or OptiPRO medium was observed during the infection step and when titre was measured using cells adapted to 5% FBS DMEM or OptiPRO medium. Finally, OptiPRO-adapted CV-1 cells were successfully cultivated using Cytodex-1 microcarriers to inform future scale up studies.

14.
Essays Biochem ; 60(4): 381-391, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903825

RESUMO

The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI).


Assuntos
Inteligência Artificial , Biologia Sintética/métodos , Animais , Comunicação Celular , Redes Reguladoras de Genes , Humanos , Aprendizagem , Modelos Biológicos
15.
Springerplus ; 5(1): 1510, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652083

RESUMO

BACKGROUND: Chinese Hamster Ovary (CHO) cells are the current industry standard for production of therapeutic monoclonal antibodies at commercial scales. Production optimisation in CHO cells hinges on analytical technologies such as the use of the polymerase chain reaction (PCR) to quantify genetic factors within the CHO genome and to detect the presence of contaminant organisms. PCR-based assays, whilst sensitive and accurate, are limited by (i) requiring lengthy sample preparation and (ii) a lack of standardisation. RESULTS: In this study we directly assess for the first time the effect of CHO cellular material on quantitative PCR (qPCR) and end-point PCR (e-pPCR) when used to measure and detect copies of a CHO genomic locus and a mycoplasma sequence. We also perform the first head-to-head comparison of the performance of a conventional qPCR method to that of the novel linear regression of efficiency (LRE) method when used to perform absolute qPCR on CHO-derived material. LRE qPCR features the putatively universal 'CAL1' standard. CONCLUSIONS: We find that sample preparation is required for accurate quantitation of a genomic target locus, but mycoplasma DNA sequences can be detected in the presence of high concentrations of CHO cellular material. The LRE qPCR method matches performance of a conventional qPCR approach and as such we invite the synthetic biology community to adopt CAL1 as a synthetic biology calibration standard for qPCR.

16.
PeerJ ; 4: e2031, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27441104

RESUMO

Aim. The nascent field of bio-geoengineering stands to benefit from synthetic biologists' efforts to standardise, and in so doing democratise, biomolecular research methods. Roseobacter clade bacteria comprise 15-20% of oceanic bacterio-plankton communities, making them a prime candidate for establishment of synthetic biology chassis for bio-geoengineering activities such as bioremediation of oceanic waste plastic. Developments such as the increasing affordability of DNA synthesis and laboratory automation continue to foster the establishment of a global 'do-it-yourself' research community alongside the more traditional arenas of academe and industry. As a collaborative group of citizen, student and professional scientists we sought to test the following hypotheses: (i) that an incubator capable of cultivating bacterial cells can be constructed entirely from non-laboratory items, (ii) that marine bacteria from the Roseobacter clade can be established as a genetically tractable synthetic biology chassis using plasmids conforming to the BioBrick(TM) standard and finally, (iii) that identifying and subcloning genes from a Roseobacter clade species can readily by achieved by citizen scientists using open source cloning and bioinformatic tools. Method. We cultivated three Roseobacter species, Roseobacter denitrificans, Oceanobulbus indolifexand Dinoroseobacter shibae. For each species we measured chloramphenicol sensitivity, viability over 11 weeks of glycerol-based cryopreservation and tested the effectiveness of a series of electroporation and heat shock protocols for transformation using a variety of plasmid types. We also attempted construction of an incubator-shaker device using only publicly available components. Finally, a subgroup comprising citizen scientists designed and attempted a procedure for isolating the cold resistance anf1 gene from Oceanobulbus indolifexcells and subcloning it into a BioBrick(TM) formatted plasmid. Results. All species were stable over 11 weeks of glycerol cryopreservation, sensitive to 17 µg/mL chloramphenicol and resistant to transformation using the conditions and plasmids tested. An incubator-shaker device, 'UCLHack-12' was assembled and used to cultivate sufficient quantity of Oceanobulbus indolifexcells to enable isolation of the anf1 gene and its subcloning into a plasmid to generate the BioBrick(TM) BBa_K729016. Conclusion.The process of 'de-skilling' biomolecular techniques, particularly for relatively under-investigated organisms, is still on-going. However, our successful cell growth and DNA manipulation experiments serve to indicate the types of capabilities that are now available to citizen scientists. Science democratised in this way can make a positive contribution to the debate around the use of bio-geoengineering to address oceanic pollution or climate change.

17.
J Microbiol Methods ; 127: 111-122, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27211507

RESUMO

Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard.


Assuntos
Genoma Fúngico , Pichia/química , Pichia/genética , Reação em Cadeia da Polimerase/métodos , Biologia Sintética/métodos , Primers do DNA , Genômica , Modelos Lineares , Pichia/fisiologia
18.
Biotechnol Prog ; 32(4): 840-7, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27071365

RESUMO

Fab' fragments have become an established class of biotherapeutic over the last two decades. Likewise, developments in synthetic biology are providing ever more powerful techniques for designing bacterial genes, gene networks and entire genomes that can be used to improve industrial performance of cells used for production of biotherapeutics. We have previously observed significant leakage of an exogenous therapeutic Fab' fragment into the growth medium during high cell density cultivation of an Escherichia coli production strain. In this study we sought to apply a promoter engineering strategy to address the issue of Fab' fragment leakage and its consequent bioprocess challenges. We used site directed mutagenesis to convert the Ptac promoter, present in the plasmid, pTTOD-A33 Fab', to a Ptic promoter which has been shown by others to direct expression at a 35% reduced rate compared to Ptac . We characterized the resultant production trains in which either Ptic or Ptac promoters direct Fab' fragment expression. The Ptic promoter strain showed a 25-30% reduction in Fab' expression relative to the original Ptac strain. Reduced Fab' leakage and increased viability over the course of a fed-batch fermentation were also observed for the Ptic promoter strain. We conclude that cell design steps such as the Ptac to Ptic promoter conversion reported here, can yield significant process benefit and understanding with respect to periplasmic Fab' fragment production. It remains an open question as to whether the influence of transgene expression on periplasmic retention is mediated by global metabolic burden effects or periplasm overcapacity. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:840-847, 2016.


Assuntos
Escherichia coli/metabolismo , Engenharia Genética , Fragmentos Fab das Imunoglobulinas/biossíntese , Periplasma/metabolismo , Regiões Promotoras Genéticas/genética , Escherichia coli/citologia , Fragmentos Fab das Imunoglobulinas/química , Mutagênese Sítio-Dirigida , Periplasma/química , Periplasma/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Biotechnol Bioeng ; 109(2): 517-27, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21898368

RESUMO

Host cell engineering is becoming a realistic option in whole bioprocess strategies to maximize product manufacturability. High molecular weight (MW) genomic DNA currently hinders bioprocessing of Escherichia coli by causing viscosity in homogenate feedstocks. We previously showed that co-expressing Staphylococcal nuclease and human Fab' fragment in the periplasm of E. coli enables auto-hydrolysis of genomic DNA upon cell disruption, with a consequent reduction in feedstock viscosity and improvement in clarification performance. Here we report the impact of periplasmic nuclease expression on stability of DNA and Fab' fragment in homogenates, host-strain growth kinetics, cell integrity at harvest and Fab' fragment productivity. Nuclease and Fab' plasmids were shown to exert comparable levels of growth burden on the host W3110 E. coli strain. Nuclease co-expression did not compromise either the growth performance or volumetric yield of the production strain. 0.5 g/L Fab' fragment (75 L scale) and 0.7 g/L (20 L scale) was achieved for both unmodified and cell-engineered production strains. Unexpectedly, nuclease-modified cells achieved maximum Fab' levels 8-10 h earlier than the original, unmodified production strain. Scale-down studies of homogenates showed that nuclease-mediated hydrolysis of high MW DNA progressed to completion within minutes of homogenization, even when homogenates were chilled on ice, with no loss of Fab' product and no need for additional co-factors or buffering.


Assuntos
Engenharia Celular/métodos , Escherichia coli/metabolismo , Fragmentos Fab das Imunoglobulinas/biossíntese , Nuclease do Micrococo/metabolismo , Proteínas Recombinantes/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Fermentação , Fragmentos Fab das Imunoglobulinas/análise , Fragmentos Fab das Imunoglobulinas/genética , Cinética , Nuclease do Micrococo/genética , Periplasma , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética
20.
J Biol Chem ; 277(11): 9529-39, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11751913

RESUMO

We demonstrate the presence of a glycosylphosphatidylinositol (GPI) anchor-specific endosomal pathway in the protozoan pathogen Trypanosoma brucei. In higher eukaryotes evidence indicates that GPI-anchored proteins are transported in both the endocytic and exocytic systems by mechanisms involving sequestration into specific membrane microdomains and consequently sorting into distinct compartments. This is potentially extremely important in trypanosomatids as the GPI anchor is the predominant mechanism for membrane attachment of surface macromolecules, including the variant surface glycoprotein (VSG). A highly complex developmentally regulated endocytic network, vital for nutrient uptake and evasion of the immune response, exists in T. brucei. In common with mammalian cells an early endosomal compartment is defined by Rab5 small GTPases, which control transport processes through the endosomal system. We investigate the function of two trypanosome Rab5 homologues. TbRAB5A and TbRAB5B, which colocalize in the procyclic stage, are distinct in the bloodstream form of the parasite. TbRAB5A endosomes contain VSG and transferrin, endocytosed by the T. brucei GPI-anchored transferrin receptor, whereas TbRAB5B endosomes contain the transmembrane protein ISG(100) but neither VSG nor transferrin. These findings indicate the presence of trypanosome endosomal pathways trafficking proteins through specific routes depending on the mode of membrane attachment. Ectopic expression of mutant TbRAB5A or -5B indicates that TbRAB5A plays a role in LDL endocytosis, whereas TbRAB5B does not, but both have a role in fluid phase endocytosis. Hence TbRAB5A and TbRAB5B have distinct functions in the endosomal system of T. brucei. A developmentally regulated GPI-specific endosomal pathway in the bloodstream form suggests that specialized transport of GPI-anchored proteins is required for survival in the mammalian host.


Assuntos
Endocitose , Endossomos/metabolismo , Glicosilfosfatidilinositóis/fisiologia , Proteínas de Protozoários/fisiologia , Trypanosoma brucei brucei/metabolismo , Proteínas rab5 de Ligação ao GTP/fisiologia , Animais , Linhagem Celular , Guanosina Trifosfato/metabolismo , Lipoproteínas LDL/metabolismo , Mutação , Isoformas de Proteínas , Coelhos , Receptores de LDL/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...